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Abstract  

The paper aims to study about Rayleigh waves in an elastic solid half space using consistent couple stress theory 

under impedance boundary conditions. Impedance boundary conditions are used to imitate the impact of a thin 

layer over a half space. Consistent couple stress elasticity involves an additional size dependent elastic material 

parameter, known as internal characteristic length, which takes care of internal microstructures of the material. 

The influence of characteristic length becomes important when its dimensions are comparable with the order of 

internal microstructure of the material. Dispersion equation for propagation of Rayleigh waves under impedance 

boundary conditions is derived using consistent couple stress theory. Dispersion equation of Rayleigh waves for 

a traction free couple stress elastic half-space is obtained as a particular case. The effects of impedance and 

characteristic length parameters are studied on the phase velocity of Rayleigh waves. The dispersion curves are 

plotted for Rayleigh waves propagation under impedance conditions as well as under traction free conditions. 
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1. Introduction 

Classical theory of elasticity is developed on assumptions that materials are homogeneous and are distributed 

continuously throughout the entire volume. The inner molecular structure of material was not taken into 

consideration in classical theory of elasticity. These deficiencies of classical theory of elasticity have led to the 

development of size dependent microcontinuum theories of elasticity [1-5]. These generalized microcontinuum 

theories involve certain additional material parameters which take care of internal microstructures of the material. 

Hadjesfandiari and Dargush [6] proposed consistent couple stress theory of elasticity, which involve three 

material parameters, out of which two are Lame’s constants of classical mechanics and third parameter is couple 

stress coefficient (𝜂 = 𝜇𝑙2) and it further depends upon a length parameter known as internal characteristic length 

(𝑙) of the material. This length parameter creates a difference between classical theory and consistent couple 

stress theory of elasticity. This characteristic length is negligible but it becomes important as the dimensions of 

body become comparable with this length parameter. In general, characteristic length is of the order of average 

internal cell size or internal microstructure of material. Moreover, stresses defined in constitutive relations of 

consistent couple stress theory are also non-symmetric in nature. Constitutive relations involve an additional 
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expression defining couple stresses in terms of displacement vector and these couple stresses are skew-symmetric 

in nature. Researchers have applied consistent couple stress theory of elasticity to examine various problems [7-

8]. 

Rayleigh surface waves have been extensively studied by the researchers in the fields of seismology, geophysics, 

acoustics and non-destructive testing techniques [9-11]. In its usual framework, Rayleigh waves exist in a traction 

free half space. However, to mathematically simulate the effects of thin layer of some other material over a half 

space, Tiersten [12] explained impedance boundary like conditions. In these impedance type boundary 

conditions, a linear combination of unknown function and their derivatives is prescribed on the boundary and 

stresses are assumed to be dependent upon displacement components and their derivatives. Researchers have 

explored Rayleigh waves using these types of boundary conditions [13-17]. 

Keeping in view, the capability of couple stress theory to examine materials at microstructural level, we intend 

to study the Rayleigh waves propagation in an elastic solid half space using impedance boundary conditions in 

the frame work of consistent couple stress theory of elasticity. 

 

2. Governing Equations and Solution 

Consider a homogeneous isotropic elastic solid is occupying the half space 𝑧 ≥ 0. We assumed the cartesian 

frame of reference having its origin on the surface 𝑧 = 0  and wave is propagating along 𝑥-axis direction, whereas 

the 𝑧-axis is pointing downwards into the half space. It is supposed that all particles along any line parallel to 𝑦-

axis are equally displaced, so there is no variation along the direction of 𝑦-axis, that is 
𝜕

𝜕𝑦
≡ 0. The governing 

equation of consistent couple stress theory in cartesian tensor notation is given as [6] 

(𝜆 + 𝜇 + 𝜂∇2)𝑢𝑘,𝑘𝑖 + (𝜇 − 𝜂∇2)∇2𝑢𝑖 = 𝜌𝑢̈𝑖                                                                               (1) 

The constitutive relations are gives as [6] 

𝜎𝑗𝑖 = 𝜆𝑢𝑘,𝑘𝛿𝑖𝑗 + 𝜇(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) − 𝜂∇2(𝑢𝑖,𝑗 − 𝑢𝑗,𝑖)                                                                       (2) 

𝜇𝑗𝑖 = 4𝜂(𝜔𝑖,𝑗 − 𝜔𝑗,𝑖), where 𝜔𝑖 =
1

2
𝜖𝑖𝑗𝑘𝑢𝑘,𝑗                                                                               (3) 

where  𝜇 , 𝜆  are Lame’s parameters,𝜌  is density, 𝑢𝑖  are displacement components, 𝜂 = 𝜇𝑙2  is couple stress 

coefficient, 𝑙 is characteristic length, 𝜎𝑗𝑖 is stress tensor, 𝛿𝑖𝑗 is Kronecker’s delta, 𝜇𝑗𝑖 is couple stress tensor, 𝜖𝑖𝑗𝑘 

is alternating tensor, 𝑖, 𝑗, 𝑘 = 1, 2, 3. 

To solve the equation (1), we constrain our argument to two-dimensional medium, so let us assume displacement 

vector as 𝑢⃗ = (𝑢, 0, 𝑤) and by Helmholtz decomposition rule, we consider 

𝑢⃗ = ∇𝜙 + ∇ × 𝜓⃗ , ∇. 𝜓⃗ = 0                                                                                                            (4) 

where 𝜙 is a scalar potential functions and 𝜓⃗ = (0, 𝜓, 0) is a vector potential function. Hence, we get  

𝑢 =
𝜕𝜙

𝜕𝑥
−

𝜕𝜓

𝜕𝑧
, 𝑤 =

𝜕𝜙

𝜕𝑧
+

𝜕𝜓

𝜕𝑥
                                                                                                           (5) 
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Substituting equation (5) in equation (1), we get 

∇2𝜙 =
1

𝐶𝑃
2

𝜕2𝜙

𝜕𝑡2                                                                                                                                  (6) 

∇2𝜓 − 𝑙2∇4𝜓 =
1

𝐶𝑆
2

𝜕2𝜓

𝜕𝑡2                                                                                                                   (7) 

 where 𝐶𝑝
2 =

(𝜆+2𝜇)

𝜌
 , 𝐶𝑠

2 =
𝜇

𝜌
. Now, consider the solutions of equations (6) and (7) as 

{𝜙, 𝜓} = {ℎ(𝑧), 𝑘(𝑧)}e𝑖𝜉(𝑥−𝑐𝑡),   where 𝜉 is wave number and 𝑐 is phase velocity                     (8)                                                                                     

Putting these solutions in equations (6) and (7), we obtain 

𝑑2ℎ(𝑧)

𝑑𝑧2
− (𝜉2 −

𝜉2𝑐2

𝐶𝑃
2 ) ℎ(𝑧) = 0                                                                                                      (9) 

𝑑4𝑘(𝑧)

𝑑𝑧4 − (2𝜉2 +
1

𝑙2
)

𝑑2𝑘(𝑧)

𝑑𝑧2 + (
𝜉2

𝑙2
+ 𝜉4 −

𝜉2𝑐2

𝑙2𝐶𝑆
2)𝑘(𝑧) = 0                                                            (10) 

By solving differential equations in (9) and (10), we obtain 

𝜙 = (𝐴1𝑒
−𝑎𝑧 + 𝐴2𝑒

𝑎𝑧)𝑒𝑖𝜉(𝑥−𝑐𝑡)                                                                                                 (11) 

𝜓 = (𝐵1𝑒
−𝛼𝑧 + 𝐵2𝑒

−𝛽𝑧 + 𝐵3𝑒
𝛼𝑧 + 𝐵4𝑒

𝛽𝑧) 𝑒𝑖𝜉(𝑥−𝑐𝑡)                                                                (12) 

where 𝑎2 = 𝜉2 (1 −
𝑐2

𝐶𝑃
2) , (𝛼2 + 𝛽2) = 2𝜉2 +

1

𝑙2
 , 𝛼2𝛽2 = 𝜉4 +

𝜉2

𝑙2
(1 −

𝑐2

𝐶𝑆
2) 

As wave must die down with depth into the half space, so we consider the solutions as  

𝜙 = 𝐴1𝑒
−𝑎𝑧𝑒𝑖𝜉(𝑥−𝑐𝑡)                                                                                                                   (13) 

𝜓 = (𝐵1𝑒
−𝛼𝑧 + 𝐵2𝑒

−𝛽𝑧) 𝑒𝑖𝜉(𝑥−𝑐𝑡)                                                                                             (14) 

where 𝐴1, 𝐵1, 𝐵2 are arbitrary constants. 

The force stresses and couple stress components are given as 

𝜎𝑧𝑥 = 𝜇 (
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
) − 𝜂 (

𝜕3𝑢

𝜕𝑥2𝜕𝑧
−

𝜕3𝑤

𝜕𝑥3
+

𝜕3𝑢

𝜕𝑧3
−

𝜕3𝑤

𝜕𝑧2𝜕𝑥
)                                                     

 𝜎𝑧𝑧 = 𝜆 (
𝜕𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑧
) + 2𝜇

𝜕𝑤

𝜕𝑧
                                                                                               

 𝜇𝑧𝑦 = 2𝜂 (
𝜕2𝑢

𝜕𝑧2 −
𝜕2𝑤

𝜕𝑧𝜕𝑥
)                          
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3. Boundary Conditions 

Following Godoy et al. [15], impedance boundary conditions at the surface 𝑧 = 0 are given as  

𝜎𝑧𝑥 + 𝜔̅𝐼1𝑢 = 0, 𝜎𝑧𝑧 + 𝜔̅𝐼2𝑤 = 0, 𝜇𝑧𝑦 = 0                                                                                (15) 

where 𝜔̅ = 𝜉𝑐  is the circular frequency, 𝐼1, 𝐼2  are impedance parameters. We assumed that the impedance 

parameters are real and 𝐼1 = 0 = 𝐼2   gives us stress free boundary conditions. Here, we are taking non-

dimensional parameters as 𝐼1
∗ =

𝐼1

√𝜇𝜌
 , 𝐼2

∗ =
𝐼2

√𝜇𝜌
 

4. Derivation of Secular Equations 

4.1 Rayleigh waves in consistent couple stress elastic half space with impedance parameters 

Using boundary conditions mentioned in (15), we get 

(−2𝑎 +
𝜔̅𝐼1

∗

𝐶𝑆
) 𝑖𝜉𝐴1 + ((𝑙2𝑘𝛼

2 − 𝑆𝛼) +
𝛼𝜔̅𝐼1

∗

𝐶𝑆
 )𝐵1 + ((𝑙2𝑘𝛽

2 − 𝑆𝛽) +
𝛽𝜔̅𝐼1

∗

𝐶𝑆
 )𝐵2 = 0                   (16) 

(𝑃 −
𝑎𝜔̅𝐼2

∗

𝐶𝑆
 ) 𝐴1 + (−2𝛼 +

𝜔̅𝐼2
∗

𝐶𝑆
) 𝑖𝜉𝐵1 + (−2𝛽 +

𝜔̅𝐼2
∗

𝐶𝑆
) 𝑖𝜉𝐵2 = 0                                                 (17) 

𝛼𝑘𝛼𝐵1 + 𝛽𝑘𝛽𝐵2 = 0                                                                                                                   (18) 

where 

 𝑃 = 2𝜉2 −
𝐶𝑃

2

𝐶𝑆
2 (𝜉2 − 𝑎2), 𝐾𝛼 = (𝜉2 − 𝛼2), 𝐾𝛽 = (𝜉2 − 𝛽2), 𝑆𝛼 = (𝜉2 + 𝛼2), 𝑆𝛽 = (𝜉2 + 𝛽2)  

The secular equation is given as  

𝛼𝑘𝛼 [(−2𝑎 +
𝜔̅𝐼1

∗

𝐶𝑆
) (−2𝛽 +

𝜔̅𝐼2
∗

𝐶𝑆
) 𝜉2 + (𝑃 −

𝑎𝜔̅𝐼2
∗

𝐶𝑆
 ) ((𝑙2𝑘𝛽

2 − 𝑆𝛽) +
𝛽𝜔̅𝐼1

∗

𝐶𝑆
)] − 

𝛽𝑘𝛽 [(−2𝑎 +
𝜔̅𝐼1

∗

𝐶𝑆
) (−2𝛼 +

𝜔̅𝐼2
∗

𝐶𝑆
) 𝜉2 + (𝑃 −

𝑎𝜔̅𝐼2
∗

𝐶𝑆
 ) ((𝑙2𝑘𝛼

2 − 𝑆𝛼) +
𝛼𝜔̅𝐼1

∗

𝐶𝑆
)] = 0                       (19) 

4.1.1 Rayleigh waves in consistent couple stress half space with traction free boundary conditions 

By taking 𝐼1
∗ = 𝐼2

∗ = 0, the equation (19) reduces to dispersion equation for Rayleigh waves in couple stress 

traction free half space 

𝛼𝑘𝛼 (4𝑎𝛽𝜉2 + 𝑃(𝑙2𝑘𝛽
2 − 𝑆𝛽)) − 𝛽𝑘𝛽(4𝛼𝑎𝜉2 + 𝑃(𝑙2𝑘𝛼

2 − 𝑆𝛼)) = 0                                       (20)   

Equation (20) is same as obtained by Sharma and kumar [18]. 
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4.2 Rayleigh waves in classical elastic half space with impedance parameters 

By considering the characteristic length 𝑙 = 0 in equations (1)-(2), the consistent couple stress model reduces to 

classical elastic model and further, following the same procedure as above, we will get dispersion equation for 

Rayleigh wave propagation in homogeneous isotropic elastic half space under impedance conditions. Using 

boundary conditions mentioned in (15), we obtain 

(−2𝑎 +
𝜔̅𝐼1

∗

𝐶𝑆
) 𝑖𝜉𝐴 + (−(𝑏2 + 𝜉2) +

𝜔̅𝑏𝐼1
∗

𝐶𝑆
)𝐵 = 0                                                                       (21) 

(
𝜆

𝜇
(𝑎2 − 𝜉2) + 2𝑎2 −

𝑎𝜔̅𝐼2
∗

𝐶𝑆
)𝐴 + (−2𝑏 +

𝜔̅𝐼2
∗

𝐶𝑆
) 𝑖𝜉𝐵 = 0                                                             (22) 

where 𝑎2 = 𝜉2 (1 −
𝑐2

𝐶𝑃
2) , 𝑏2 = 𝜉2 (1 −

𝑐2

𝐶𝑆
2) 

The secular equation is given as  

(−2𝑎 +
𝜔̅𝐼1

∗

𝐶𝑆
) (−2𝑏 +

𝜔̅𝐼2
∗

𝐶𝑆
) 𝜉2 + (

𝜆

𝜇
(𝑎2 − 𝜉2) + 2𝑎2 −

𝑎𝜔̅𝐼2
∗

𝐶𝑆
) (−(𝑏2 + 𝜉2) +

𝜔̅𝑏𝐼1
∗

𝐶𝑆
) = 0         (23) 

4.2.1 Rayleigh waves in an elastic solid half space with traction free boundary conditions 

By taking 𝐼1
∗ = 𝐼2

∗ = 0, the equation (23) gives us dispersion equation for Rayleigh waves in a half space with 

traction free surface and is same as obtained by Graff [19] 

4𝜇𝑎𝑏𝜉2 − (𝑏2 − 𝜉2)(𝜆(𝑎2 − 𝜉2) + 2𝜇𝑎2) = 0                                                                         (24) 

5. Numerical results and discussion 

For numerical results and discussions, we are considering material parameters [20] as 𝐸 =Youngs modulus=14 

GPa, Poisson ratio= 𝜈 =0.37, Density= 𝜌 =1500 𝑘𝑔/𝑚3,the value of longitudinal velocity is 𝐶𝑃 = 4063𝑚/𝑠 

and shear velocity is 𝐶𝑆 = 1846𝑚/𝑠.  

5.1 Rayleigh waves in context of classical theory of elasticity  

Fig. 1 shows the variation of Rayleigh speed (𝑐/𝐶𝑠) with respect to wave number (𝜉) in an elastic half-space 

without impedance parameter that is 𝐼1
∗ = 𝐼2

∗ = 0and with impedance parameter having values 𝐼1
∗ = 2, 𝐼2

∗ = 0 and 

𝐼1
∗ = 0, 𝐼2

∗ = 2. It is observed that impedance conditions lead to decrease in phase velocity of Rayleigh waves. 

5.2 Effects of impedance parameters on Rayleigh wave velocity in the context of consistent couple stress theory 

Fig. 2 shows the profile of normalized Rayleigh wave speed (𝑐/𝐶𝑠) with normalized wave number (𝜉𝑙) in couple 

stress elastic half-space exhibiting microstructure. Here, impedance parameters 𝐼1
∗ = 3, 𝐼2

∗ = 5 are kept fixed and 

characteristic lengths (𝑙), is taken as 𝑙 = 0.00001𝑚. It can be observed that for small wave numbers the phase 
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velocity increases sharply with increasing wave number before becoming almost constant with higher values of 

wave number. This means profiles of phase velocity are dispersive in nature for short wave number range. The 

effect of microstructure is clearly visible on the Rayleigh waves as predicted by [21] that the Rayleigh waves 

exhibit dispersion. 

5.2.1 Effects of Impedance parameter 𝐼1
∗ 

To examine the impact of non-dimensional impedance parameter 𝐼1
∗ explicitly on the phase velocity of Rayleigh 

wave, here in Fig. 3, we have consider three non-zero values of 𝐼1
∗ = 3, 4, 5 and 𝐼2

∗ is taken as zero. Here material 

characteristic length is assumed to be 0.00001 m. It is found that Rayleigh waves show dispersion on the lower 

wave number range and it almost becomes constant for large values of wave number. Moreover, it can also be 

noted that phase speed decreases with increase in impedance parameter 𝐼1
∗. The variation in phase velocity for a 

continuous range of impedance parameter 𝐼1
∗ is shown in Fig. 4 

5.2.2 Effects of Impedance parameter 𝐼2
∗ 

Fig. 5 shows the variation of normalized Rayleigh wave speed with dimensionless wave number for different 

values of impedance parameter, where impedance parameter 𝐼2
∗, having values 3, 4, 5 is varied and 𝐼1

∗ = 0. Also, 

by taking characteristic length to be of the order 10−5𝑚. It is found that Rayleigh waves show dispersion in the 

lower wave number range and it almost becomes constant for large values of wave number. It is noted that phase 

velocity decreases with increase in impedance parameter 𝐼2
∗. The variation in phase velocity for a continuous 

range of impedance parameter 𝐼2
∗ is shown in Fig. 6. 

 

Figure 1. Variation of Rayleigh wave speed with wave number for different values of impedance parameter in 

classical theory 
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Figure 2. Variation of dimensionless Rayleigh wave speed with wave number, when impedance parameter 𝐼1
∗ =

3, 𝐼2
∗ = 5 are kept fixed with characteristic length 𝑙 = 0.00001𝑚 

 

Figure 3. Variation of dimensionless Rayleigh wave speed with dimensionless wave number for three different 

values of impedance parameter 𝐼1
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Figure 4. Variation of dimensionless Rayleigh wave speed with impedance parameter 𝐼1
∗ 

 

Figure 5. Variation of dimensionless Rayleigh wave speed with dimensionless wave number for three different 

values of impedance parameter 𝐼2
∗ = 3, 4, 5 
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Figure 6. Variation of dimensionless Rayleigh wave speed with impedance parameter 𝐼2
∗ 

 

6. Conclusion 

In the present study, it is found that Rayleigh wave does not exhibit any dispersion in context of classical 

mechanics. It is simply the validation of the results which are already established in [19]. Impedance parameter 

affects phase velocity profiles significantly and Rayleigh wave speed decreases considerably in the presence of 

impedance parameter. Secular equation for the propagation of Rayleigh waves with impedance conditions has 

been derived within the framework of consistent couple stress theory. One of the important observations of the 

study is dispersive nature of Rayleigh waves in context of consistent couple stress elasticity. Similar type of 

phenomenon has already been predicted by [21]. It is observed that impedance parameters go against phase 

velocity in the context of consistent couple stress elasticity also. 
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